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EFFECTOF INDUCER INLETAND DIFFUSERTHROAT AREAS ON PERFORMANCE

OF A LOW PRESSURERATIO SWEPTBACK CENTRIFUGALCOMPRESSOR

by Hugh A. Klassen

Lewis Research Center

SUMMARY

The effect on overall compressor performance of changing diffuser throat area and

impeller inducer inlet area was investigated in argon with a 10.8-centimeter swept-

back centrifugal compressor and a design pressure ratio of 1.9. Three diffuser throat

areas and three impeller inducer inlet areas of 75, 100, and 125 percent of design

were investigated in nine combinations. Performance data were obtained at corrected

speeds of 60, 80, and 95 percent of design.

The results of this investigation show that for all three inducer inlet areas, in-

creasing the diffuser area from 75 to 125 percent of design, increased flow and peak

efficiency while pressure ratio decreased only slightly. The variation in the peak ef-

ficiency increase ranged from 4.3 to 7.6 efficiency points, while the flow at peak effi-

ciency increased about 40 percent for all three inducer areas. The optimum diffuser

area for all three inducer areas was 125 percent of design or larger. Within the range

investigated, the flow range from surge to peak efficiency for a continuously variable

diffuser is about 2.5 times that for a fixed-geometry diffuser. The variation in maxi-

mum compressor efficiency with flow or compressor specific speed was about 1 effi-

ciency point for about a 27 percent change in specific speed.

A two-spool gas-turbine engine was assumed using the 75 percent area inducer

and a variable area diffuser as the gas generator compressor. Reduction of diffuser

area from 125 to 75 percent of disign area at 25 percent engine power increased en-

gine efficiency from 0.26 to 0.30. This represents a part power fuel economy im-

provement of 15 percent.

INTRODUCTION

The gas-turbine engine is often required to operate over a range of power output

as great as 15 to 1. Itis difficultto maintain high compressor and cycle efficiencies



over a wide range of power output. In open-cycle gas-turbine engines power output is

usually varied by varying aerodynamic speed, which in turn varies mass flow. As

speed is reduced, cycle pressure ratio is also reduced, and cycle efficiency is sac-
rificed.

Recently, variable inlet guide vanes for compressors have been proposed as an al-

ternative to speed variations. Response to power demands is quicker because the speed

does not change. However, at reduced power, cycle pressure ratio is reduced and

cycle efficiency is also sacrificed by this method.

Another method of flow variation is to vary compressor diffuser throat area. This

method makes use of the fact that the flow range of a centrifugal impeller without a dif-

fuser is much larger than that of an impeller operated with a vaned diffuser. A change

in diffuser area will move the impeller-diffuser operating range to a different part of

the impeller operating curve. Speed and pressure ratio are maintained at relatively

high values. Response to power demands is faster than if the flow variation is achieved

by speed variations. This method may have an advantage where the duty cycle of the

engine requires a significant amount of operating time at low power with intermittent

bursts to peak power.

In a closed-cycle gas-turbine power system, power output can be controlled by

varying the pressure level. Cycle pressure ratios and temperature ratios are main-

tained. The cycle efficiency is not penalized. However, the range of power output

variation may be restricted by physical limitations on minimum or maximum pressure

levels. In this case a change in diffuser throat area could extend the power range be-

yond the levels available from changing pressure level only. For a given mission the

required power range during operation may not be any larger than that obtainable from

pressure variations only. In this case a diffuser with a larger or smaller throat area

could be installed to establish a new power level. When the power range is larger than

that obtainable with pressure variations only, a compressor with a variable diffuser

would have to be installed.

The purpose of this investigation was to determine experimentally the effect of dif-

fuser throat area on compressor performance. In addition, the variation in inducer in-

let area was investigated to determine if there was an optimum combination of diffuser

and inducer area. This investigation parallels the investigation of reference 1 in which

the small radial turbine designed to drive this compressor and a 10-kilowatt alternator

was studied with various stator and exducer areas. Also, the effect of diffuser area on

gas-turbine engine performance was investigated analytically.

The compressor impeller used for this investigation was backswept with a

10.8-centimeter tip diameter. The diffuser was a vane island design. This compressor

was originally designed for a closed-loop space-power system. Inducer inlet and dif-

fuser throat areas were varied over a range of +25 percent of design. It is recognized

that for maximum efficiency, other design changes should accompany diffuser throat



area and inducer inletarea changes. For a rigorous investigationan attempt should be

made to optimize flow passage design throughout the compressor for each inducer-

diffuser area combination. Such changes were beyond the scope of thisprogram.

Three inducer inletand three diffuser throat areas of 75, 100, and 125 percent of

design were investigated. The nine possible combinations were tested. No changes

other than blading changes were made. Total pressure ratio and overall totalefficiency

were obtained at 60, 80, and 95 percent of design speed. Velocity diagrams are shown

for the 100 percent area impeller.

COMPRESSOR DESCRIPTION

The original compressor is described in detail in references 2 and 3. The impeller

has 15 blades with a 30 ° backsweep from radial. Tip diameter is 10.8 centimeters.

Inducer inlet hub-tip radius ratio is 0. 553. Exit blade height is 0. 521 centimeter.

Conditions at the design operating point for argon operation are

Corrected mass flow, w_F/5 , kg/sec .................... 0. 263

Overall total pressure ratio, P_/P_ ..................... 1.90

Corrected speed, N/_F , rpm ....................... 51 100

The original compressor was modified to accept removable test diffusers. Figure 1

is a photogral_h of a removable diffuser bolted in place. Three diffusers were built.

All diffuser blades were identical to the original. Throat areas were 75, 100, and

125 percent of design. The desired throat areas were obtained by adjusting blade set-

ting angles. The blading with 100 percent of design area is shown in figure 2. Figure 3

shows the blade setting angles for the three diffuser throat areas together with the dif-

fuser dimensions.

Tests were conducted with impeller inducer inlet areas equal to 75, 100, and

125 percent of design. The 100 percent impeller with the 100 percent inducer was the

original equipment. The 125 percent inducer was obtained by reducing the inducer

length of the 100 percent impeller. The 75 percent impeller was obtained by extending

the 125 percent impeller. Figure 4 shows the meridional contours of the three impel-

lers. Between the axial locations corresponding to 125 and I00 percent of design area,

the extension was identicalto the original impeller. Between the locations correspond-

ing to 100 and 75 percent of design area, the blade angle _b was gradually increased to

produce the desired area. The impeller with the 125 percent of design inducer inlet

area is shown in figure 5. The extension with the 75 percent of design area is shown in

figure 6. The impeller with the 75 percent extension installed is shown in figure 7.



TEST FACILITY

Figure 8 showsthe compressor test facility. Argon pressure upstream of the
flow orifice was regulated with a remotely operatedvalve. An electric heater between
this valve andthe orifice maintaineda constant compressor-inlet temperature.
Compressor-inlet pressure was controlled with a remotely operatedvalve downstream
from the orifice. Compressor flow wascontrolled by a remotely operatedvalve on
the compressor discharge. The argon wasdischarged into the laboratory exhaust
system.

INSTRUMENTATION

The instrumentation stations are shownin figure 9. Compressor inlet measure-
ments were takenat station 1. The instrumentation consisted of three combination
total-pressure - total-temperature probes spaced120° apart andthree static taps
120° apart. Compressor discharge measurementswere takenat station 5. The instru-
mentation for these measurementsconsisted of four combinationtotal-temperature -
total-pressure probes spaced90° apart andfour static taps 90° apart. Figure 10
showsone of the combination total-temperature - total-pressure rake probes. Com-
pressor efficiencies were computedfrom total-temperature and total-pressure meas-
urements obtainedfrom stations 1 and 5.

All pressures were measuredwith strain gagepressure transducers. Tempera-
tures were measuredwith bare spike copper-constantanthermocouples. Flow was
measuredwith an ASMEthin-plate orifice.

PROCEDURE

All tests were run with argon. Inlet total pressure wasapproximately 10.1 new-
tons per square centimeter absolute. Inlet total temperature was approximately 300K.
Tests were performed with three impellers with inducer inlet areas of 75, 100, and
125percent of design. With eachimpeller tests were performed with diffusers with
75, 100, and 125percent of the design inlet throat area. All nine impeller-diffuser
combinations were tested at 60, 80, and95 percent of designcorrected speed. The
95 percent speedlimitation was imposedbecauseof rotor dynamic instability. At
each speedthe compressor was operatedover a range of corrected mass flows. Flow
was adjustedwith the control valve on the compressor discharge line.



RESULTS AND DISCUSSION

Compressor Performance Maps

A compressor performance map for each of the nine compressor configurations is

shown in figure 11. Pressure ratio is plotted against corrected mass flow for 60, 80,

and 95 percent of design corrected speed. Constant efficiency lines and surge lines

are shown.

Compressor Performance Characteristics at 95 Percent Corrected Speed

Efficiency and pressure ratio characteristics. - The following table shows the

effect of diffuser throat area and inducer inlet area on peak efficiency and peak pres-

sure ratio at 95 percent design corrected speed:

Percent of de-

sign rotor in-

ducer area

75

100

125

Percent of de-

sign diffuser

throat area

75

100

125

75

i00

125

75

100

125

Peak overall

total effi-

ciency

0. 768

• 809

.811

• 758

• 800

• 807

• 725

• 772

• 801

Peak pres-

sure ratio

1.93

1.90

1.87

1.91

1.89

1.87

1.88

1.86

1.85

Mass flow at

peak effi-

ciency,

w@/6,
kg/sec

0. 164

• 208

• 227

• 180

• 227

• 248

• 177

.235

• 270

This table shows that for each inducer area peak efficiency increased and peak

pressure ratio decreased with increased diffuser area. Also, the changes in pressure

ratio are small, and the changes in efficiency are 4.3, 4.9, and 7.6 points for the

75, 100, and 125 percent inducer, respectively. Further, pressure ratios at peak

efficiency also decreased slightly as diffuser area was increased.

The cause for the trends may be found in the impeller velocity diagrams. Fig-

ure 12 shows approximate rotor inlet and exit velocity diagrams for the 100 percent

inducer with the 75 and 125 percent diffusers. Both diagrams are for peak compressor



efficiency at 95percent of design corrected speed. (The methodof computing these
diagrams is given in appendixB.) The decrease in diffuser area from 125to 75 per-

cent causedthe relative velocity ratio W2/W1 to decreasefrom 0.75 to 0.56. This
represents a large increase in rotor diffusion. The diffusion increase is probably a
major factor in the efficiency decrease from 0.803 at 125percent diffuser area to
0. 758at 75percent area. The tangential velocity VU, 2 decreasesas diffuser area
is increased from 75 to 125percent of designvalue. A reduction in impeller outlet
tangential velocity with increased weight flow is a characteristic of backsweptimpel-
lers. This decreases the work input into the fluid, which in turn reduces the pressure
ratio. Becausethe efficiency did increase, the changein pressure ratio is not as
large as that which would occur with the samework input decreaseat constanteffi-
ciency.

Mass flow characteristics. - The effect of diffuser throat area and inducer inlet

area variations on compressor mass flow characteristics is shown in figures 13 and 14,

where total efficiency is plotted as a function of corrected mass flow.

Figure 13 shows the mass-flow - efficiency characteristics obtained when the in-

ducer inlet area was held constant and the diffuser throat area was varied. For all

three inducer areas the flow and efficiency increased as diffuser throat area was in-

creased. The flow variation at peak efficiency was about 40 percent for the three in-

ducer areas. Unfortunately, the range of diffuser area covered was not large enough

to establish optimum diffuser area for all three inducer areas. For the 75 percent

inducer inlet area, the optimum diffuser area appears to be near 125 percent of de-

sign area because there is little change in efficiency from the 100 to the 125 percent

diffuser throat areas. From the increase in efficiency from 100 to 125 percent dif-

fuser throat areas for the 100 and 125 percent inducer inlet areas (fig. 13(b) and (c)),

it is speculated that the optimum diffuser areas are slightly and significantly above

125 percent, respectively. Above 125 percent diffuser throat area significant in-

creases in efficiency may or may not be achievable.

The effect of using continuously variable diffuser geometry on compressor flow

range is shown by figure 13. With continuously variable diffuser geometry there is an

infinite number of diffuser throat areas between 75 and 125 percent of design. There

is also an infinite number of curves similar to those of figure 13. Each curve has a

point of tangency on the dashed line in figure 13. The curve produced by the dashed

line and the solid parts of the curves on either end represents the flow range from

surge to choke with continuously variable diffuser geometry. It also represents the

envelope of maximum compressor efficiency for diffuser throat areas between 75 and

125 percent of design. It should be noted that end clearance effects have not been

included and may affect the shape and level of these curves. Comparison of the fixed



and variable geometry curves from surge to peak efficiency shows that the flow range

is increased by a factor of about 2.5 when continuously variable diffuser geometry is

used.

Figure 14 shows the mass-flow - efficiency characteristics obtained when the dif-

fuser area was held constant and the inducer inlet area was varied. Two general ob-

servations can be made from this figure. First, the efficiency decreases as inducer

inlet area is increased. Second, the mass flow increases as the inducer inlet area is

increased. The two exceptions to the last observation are for the 75 and 100 percent

diffusers (figs. 14(a) and (b)). When the inducer area was increased from 100 to

125 percent of design the flow did not increase, probably because the impeller and dif-

fuser are poorly matched causing large losses. The range of inducer area covered by

this investigation was not large enough to establish the optimum inducer area for each

diffuser area investigated. The curves do, however, show that for a given diffuser

area the optimum inducer area favors the smallest inducer area tested. Further in-

creases in efficiency may or may not be achievable with further decreases in inducer

inlet area. Additional decreases in mass flow are achievable with additional decreases

in inducer area.

The trends observed for optimum inducer area with a given diffuser area and for

optimum diffuser area with a given inducer area are probably related to diffuser in-

cidence and impeller velocity ratio. As discussed earlier, the larger the diffuser

area, the closer the impeller relative velocity ratio is to unity. This results in lower

diffusion in the impeller blade surfaces.

Specific speed characteristics. - The maximum compressor efficiency as a func-

tion of specific speed is indicated by the dashed curve in figure 15. The curve was

derived from data obtained with 125 percent'of design diffuser area. For a given in-

ducer inlet area, peak efficiency is highest with the 125 percent diffuser. From the

low end of the dashed curve, specific speed was increased about 27 percent with only a

one point variation in compressor efficiency. With additional refinements in blade pas-

sage design, the optimization of impeller velocity ratio, and the optimization of impel-

ler and diffuser incidence, the variation of maximum compressor efficiency with

specific speed would be flatter and wider than indicated by these results.

Effect of Diffuser Area on Engine Performance

In an open-cycle engine, power output is usually regulated by adjusting fuel flow

rate. Aerodynamic speed decreases with power and fuel flow. An alternative method

is to adjust mass flow by changing diffuser throat areas. Both methods are discussed in



the INTRODUCTION. In this section, these two methodsof power control are com-
pared.

Engine performance map. - Figure 16 shows the effects of compressor diffuser

throat area and aerodynamic speed on the performance of an assumed gas-turbine en-

gine. A schematic of this engine is shown in figure 17. Aerodynamic speed varies

from 60 to 95 percent of design. Diffuser throat area varies from 75 to 125 percent

of design. Inducer area is 75 percent of design. It should be noted that the analysis

was made neglecting blade-end clearance effects in a variable diffuser. Engine per-

formance is presented in terms of percent power and thermodynamic efficiency. Effi-

ciency is defined as gross power turbine specific work output divided by specific heat

input. In figure 16 engine efficiency, qE = (We - T_)/(T_ - Tc) , is plotted as a function

of percent power. In addition, curves of constant compressor corrected mass flow

and pressure ratio are shown.

The gas generator compressor performance is the same as that of the subject

compressor with the 75 percent inducer. The selection of this inducer is discussed in

appendix C. The compressor is assumed to operate at peak efficiency at every aero-

dynamic speed. This can only occur if variable turbine geometry is used. Gas gen-

erator turbine-inlet temperature is 1311 K. Other design assumptions are discussed

in appendix C. The power output at 95 percent of design flow with the 125 percent dif-

fuser is defined as 100 percent power. The corrected mass flow at this point is de-

fined as reference mass flow.

In figure 16 the operating curves for constant diffuser area represent power ad-

justment by changing aerodynamic speed only. The constant speed lines represent

power adjustment by changing diffuser area only.

En6ine efficiency. - For a given power level and with diffuser areas between 75 and

125 percent of design, decreasing diffuser area increases engine efficiency over the

range of diffuser areas tested. At 50 percent power efficiency increases from 0. 330

to 0. 371 as diffuser area is decreased from 125 to 75 percent. This results from the

decreased mass flow, which resulted from decreased diffuser area. When flow is re-

duced, compressor pressure ratio must rise to maintain a given power setting. The

increased pressure ratio results in higher engine efficiency. At the same time line

losses decrease because of lower mass flow and higher pressures.

If an engine operates at constant power, diffuser area can be changed by simply re-

placing the diffuser. If an engine is operated over a range of power levels, a variable

area diffuser is required. A variable area diffuser may have losses caused by leakage

through the clearance spaces between the vanes and sidewalls, which have not been ac-

counted for in this analysis; consequently, the efficiency gains due to decreased dif-

fuser areas may be somewhat less than indicated by figure 16.

Sudden power increases. - Starting at a given power level, an engine with a vari-

able area compressor diffuser has the potential for increasing power output more

8



rapidly than an engine with a fixed area diffuser. With a fixed area diffuser and for a

given combustor temperature, power can be increased only by increasing gas gener-

ator rotor speed. With a variable area diffuser, power increase can be obtained by

simply increasing diffuser area. For example, figure 16 shows that operation at

80 percent speed with the 75 percent diffuser corresponds to 47 percent power. For

maximum response to power demand, diffuser area should be increased to the maxi-

mum 125 percent. If this could be done instantly, the power would immediately in-

crease from 47 to 60.5 percent. If a fixed area diffuser was used, the same power in-

crease could only be obtained by increasing aerodynamic speed from 73 to 80 percent.

The time advantage that can be gained by using a variable area diffuser is not neces-

sarily significant; it depends on the time required to change the diffuser setting and

the rate at which the gas generator rotor can be accelerated.

SUMMARY OF RESULTS

A 10.8-centimeter sweptback centrifugal compressor with a design pressure ratio

of 1.9 was tested in argon with nine combinations of three diffuser throat areas and

three impeller inducer inlet areas of 75, 100, and 125 percent of design. The effects

on compressor efficiency and corrected mass flows obtained from various combinations

of these areas were evaluated. The following summarizes the results obtained at

95 percent of design corrected speed:

1. For each inducer area mass flow and peak efficiency increased, and peak pres-

sure ratio decreased slightly when diffuser throat area was increased within the range

covered by this investigation. The peak efficiency increase varied from 4.3 to 7.6

efficiency points; the flow at peak efficiency increased about 40 percent for all three

inducer areas.

2. The optimum diffuser throat area for each inducer inlet area was 125 percent

of design or larger.

3. The flow range from surge to peak efficiency for a continuously variable dif-

fuser was about 2.5 times that for a fixed-geometry diffuser.

4. The variation in maximum compressor efficiency with compressor specific

speed was about 1 efficiency point with a 27 percent change in specific speed.

An analysis was made of an open-cycle engine, which operates over a wide range

of power settings and, consequently, must operate over a range of aerodynamic speeds.

A design was assumed for a two-spool engine using the 75 percent area inducer and a

variable area diffuser. The following results were obtained for diffuser areas between

75 and 125 percent of design.

1. At a given engine power level, engine efficiency increased as diffuser throat

area was reduced. At 50 percent power engine efficiency increased from 0. 330 to 0. 371

9



as diffuser area was decreased from 125 to 75 percent. This efficiency increase was

due to increased compressor pressure ratio and decreased line losses.

2. At a given compressor aerodynamic speed, engine power increased as diffuser

throat area was increased. At 80 percent of design corrected speed, power increased

from 47 to 60.5 percent as diffuser throat area was increased from 75 to 125 percent

of design.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, August 16, 1974,

501-24.
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APPENDIX A

SYMBOLS

Cp

E

H'

N

P

T

U

V

W

W

Ot

_b

5

q

_E

0

60

Subscripts:

a

b

C

d

e

f

g

specific heat at constant pressure, J/(kg)(K)

recuperator effectiveness, (Wc - T_)/(T} - W_)

isentropic specific work based on total pressure ratio, J/kg

rotative speed, rpm

pressure, N/cm 2 abs

temperature, K

blade velocity, m/sec

absolute gas velocity, m/sec

relative gas velocity, m/sec

mass flow, kg/sec

absolute gas flow angle measured from meridional direction, deg

relative gas flow angle measured from meridional direction, deg

blade angle measured from meridional direction, deg

ratio of inlet total pressure to U.S. standard sea-level pressure, P_/P*

compressor or turbine overall totalefficiency

engine thermodynamic efficiency

ratio of compressor inlettotaltemperature to U.S.

temperature, T_/T*

rotative speed, rad/sec

compressor inlet, two-spool engine

compressor discharge, two-spool engine

recuperator high-pressure outlet, two-spool engine

gas generator turbine inlet, two-spool engine

gas generator turbine discharge, two-spool engine

power turbine discharge, two-spool engine

recuperator low pressure outlet, two-spool engine

standard sea-level

11



i station at inducer inlet, meanradius

m meridional component

u tangential component

1 station at compressor inlet

2 station at rotor exit

5 station at scroll exit

Superscripts:

' absolute total state

* U.S. standard sea-level conditions (temperature, 288.15K; pressure,
10.13 N/cm 2 abs)

12



APPENDIX B

VELOCITY _AGRAMS

No pressure measurements were taken at the inducer inlet or impeller exit. To

obtain approximate velocity diagrams at the inducer inlet, isentropic flow was assumed

between station 1 and the inducer. Static pressures for approximate impeller exit

diagrams were obtained from static pressure ratio versus corrected mass flow data

from previous tests with conical diffusers. An iteration procedure was used that

satisfiedcontinuity and the relation UV u = cp(T_ - T_). Itis believed these diagrams

are accurate enough to illustratethe effects of changing diffuser area.

13



APPEND_ C

ASSUMED ENGINE

The purpose of this hypothetical engine is to illustrate the effect of compressor

diffuser throat area variation on the performance of a gas-turbine engine. Compressor-

inlet temperature is 288 K. Recuperator effectiveness E is 0.87. Gas generator

turbine-inlet temperature is 1311 K. Efficiency of both turbines is constant at 0.87.

The cold recuperator exit stream is at ambient static pressure with essentially zero

velocity. Flow through the recuperator is laminar. Other flows are turbulent. At

100 percent power (see fig. 17), system total pressure losses are as follows:

P_ - p,
c _ 0.015

pl
C - Pd

= 0. 032
p,

C

P} - p,
g = 0.023

P}

These pressure loss values are approximately equal to those of the Brayton cycle

space-power engine described in reference 2. They are believed to be reasonable

values for gas-turbine propulsion engines.

The 75 percent inducer was chosen because it produces higher compressor effi-

ciencies than the 100 and 125 percent inducers. However, the data in the compressor

performance table in the section RESULTS AND DISCUSSION show that there is little

difference in performance between the 75 and 100 percent inducers. An engine per-

formance map using the 100 percent inducer would be very similar to figure 16. With

the 125 percent inducer efficiency is poor for diffuser areas of 75 and 100 percent.

14
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Figure 1. - Removable diffuser mounted in scroll assembly.

\
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C-72-2939

Figure 2. - Diffuser blading with lO0 percent of design throat area.
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Figure 4. - Meridional view of impeller blade. (Linear
dimensions are in cm. )

Figure 3. - Diffuser blade settings.
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Figure 5. - Impeller with 125 percent of design inducer inlet area.
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Figure 6. - Inducer extension with 75 percent of

design inducer inlet area.

High-pressure argon supply

C-73-1856

Figure 7. Impeller with 75 percent of design inducer inlet area.

Orifice pressure
valye

.--Electric heater

Filter_

Orifice _,

Z

Compressor flow
control valve

Exha ust__,.,_

Pressure
valye

Compressor J

\\,
_ -.----.__ _ High pressure

,e I III ,u?,?e _air supply
neIIIIW'alt;e'_ "--

"-'-_ I-I/--'-----C-J Pressure

/i _.._l c°ntr°l valve

\\\\\
Figure 8. - Compressor test rig.
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Figure g. Compressor crosssection showing instrument locations at stations I and 5. (All dimensions are in cm.l

Figure 10. - Combination total-pressure and total-temperature rake.
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(a)75 Percent of design diffuser throat area. Relative velocity
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Figure ]2. - Velocity diagrams for impeller with 100 percent inducer inlet area; inducer it, let temperature, 294 K.
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(b) Inducer inlet area, 100 percent of design. (c) Inducer inlet area, 125 percent of design.

Figure 13. - Effect of diffuser throat area on efficiency - mass-flow characteristics for 95 percent of design speed.
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(b) Diffuser throat area, 100 percent of design. (c) Diffuser throat area, 125 percent of design.

Figure 14. - Effect of inducer area on efficiency - mass-flow characteristics for 95 percent of desian speed.
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characteristics at 95 percent of design aerodynamic speed; diffuser

throat area, 125 percent of design.
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Figure 16. - Variation of engine efficiency with percent power for diffuser throat areas with 75, 100, and 125 percent of design area; inducer inlet area,
75 percent of design•
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Figure 17, Assumed gas-turbine engine.
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